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Abstract: In this paper, a novel hybrid optimization algorithm, which combines a firefly algorithms and 
Artificial Bee Colony algorithm (FFA- ABC), is proposed for solving the economic power dispatch (EPD) 
problem. The hybrid algorithm is structured with two stages. The first stage uses the search by firefly algorithm 
(FFA) and second stage is a search with Artificial Bee Colony algorithm (ABC).   The hybrid algorithm 
involves two level of optimization, namely global search by the ABC and local search by the FFA, which 
cooperates in a global process of optimization. It can provide more robust convergence. The proposed method 
is tested in standard IEEE 30 bus and IEEE 57 bus test systems. Numerical results illustrate the feasibility and 
potential of the proposed hybrid algorithm. 
 
 
Key-words: Economic power dispatch (EPD), Artificial Bee colony Algorithm, Firefly algorithm, hybrid 
method. 

 
1 Introduction 
The economic power dispatch (EPD) problem has 
been one of the most widely studied subjects in the 
power system community since Carpentier first 
published the concept in 1962 [1]. The EPD 
problem is a large-scale highly constrained 
nonlinear non-convex optimization problem [2]. To 
solve it, a number of conventional optimization 
techniques such as nonlinear programming (NLP) 
[3], quadratic programming (QP) [4], linear 
programming  (LP) [5], and interior point methods 
[6], Newton-based method [7],  mixed integer 
programming[8], dynamic programming [9], branch 
and bound [10] have been applied. All of these 
mathematical methods are fundamentally based on 
the convexity of objective function to find the global 
minimum. However, the EPD problem has the 
characteristics of high nonlinearity and 
nonconvexity. 
Applications of conventional optimization 
techniques such as the gradient-based algorithms are 
not good enough to solve this problem. Because it 
depends on the existence of the first and the second 
derivatives of the objective function and on the well 
computing of these derivative in large search space. 
Therefore, conventional methods based on 
mathematical technique cannot give a guarantee to 
find the global optimum. In addition, the 
performance of these traditional approaches also 
depends on the starting points and is likely to 
converge to local minimum or even diverge. 

Recently, many attempts to overcome the 
limitations of the mathematical programming 
approaches have been investigated such as meta-
heuristic optimization methods, for example  tabu 
search(TS) [11], simulated annealing (SA) [12], 
genetic algorithms [13][14], Evolutionary 
Programming (EP) [15],  artificial neural networks 
[16][17], particle swarm [18][19], Ant Colony 
optimization (ACO) [20][21], harmony search 
algorithm [22]and cooperative evolutive concept 
learning [23]. 
Their applications to global optimization problems 
become attractive because they have better global 
search abilities over conventional optimization 
algorithms. The Meta-heuristic techniques seem to 
be promising and evolving, and have come to be the 
most widely used tools for solving EPD. 
These minimization problems the meta-heuristic 
methods allow to find solutions closer to the 
optimum but with high cost in time. 
In this regards to solve this problem i.e. improve 
results and convergence time, we have developed a 
new hybrid method ( FAA-ABC) based the firefly 
algorithm which was developed by Xin-She Yang at  
Cambridge University in 2008 and the artificial Bee 
colony algorithm (ABC)  algorithm was proposed 
by Karaboga in 2005 for solving numerical 
optimization problems. 
Contrary to the most meta-heuristic algorithms, the 
FFA algorithm has a very great ability to search 
solutions with a fast speed to converge,  
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The method is tested on two electrical networks 
IEEE 30 bus and IEEE57 bus. Simulation results 
confirm the advantage of computation rapidity and 
solution accuracy of the proposed method. These 
results show great promise. 
The rest of this paper is organized as follows. 
Section 2 considers an Economic power dispatch 
(EPD) formulation and the optimization under 
equality and inequality constraints. Section 3 
discusses an explanation of the Firefly Algorithm 
(FFA). The Particle Swarm Optimization method is 
explained in Section 4. Section 5 discusses Artificial 
Bee colony algorithm. The approach FFA-ABC is 
presented in section 6. The paper ends with 
conclusions in Section 7. 
 
 

2 Economic power dispatch (EPD) 
The goal of conventional EPD problem is to solve 
an optimal allocation of generating powers in a 
power system [24]. 

The power balance constraint and the generating 
power constraints for all units should be satisfied. In 
other words, the EPD problem is to find the optimal 
combination of power generations which minimize 
the total fuel cost while satisfying the power balance 
equality constraint and several inequality constraints 
on the system [25]. 

The total fuel cost function is formulated as 
follows: 
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Where )( GPf , is the total production cost in $/hr; 

)( Gii Pf is the fuel cost function of unit i in $/hr; 

ai, bi, ci are the fuel cost coefficients of unit i; 

GiP  is the real power output of unit i in MW; 

In minimizing total fuel cost (see Figure. 1) the 
following constraints should be satisfied. 

 
 

2.1 Active Power Balance equation 
For power balance an equality constraint should be 
satisfied. The generated power should be the same 
as total load demand added to the total line losses. It 
is represented as follows: 
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DjP  is the total system demand; 
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GiP  is the total system production; 

LP   is the total transmission loss of the system in 

MW; 
NG   is the number of generator units in the system; 
ND  is number of loads. 
 
 

2.2 Active Power Generation limits 
Generation power of each generator should be laid 
between maximum and minimum limits. There are 
following inequality constraints for each generator 
 

maxmin
GiGiGi PPP                 (4) 

 
min

GiP , max
GiP  are the minimum and maximum 

generation limits of the real power of unit i. 
 
 

 
Fig.1  Fuel cost curve of thermal generator. 

The exact value of the system losses can be 
determined by means of a power flow solution. The 
most popular approach for finding an approximate 
value of the losses is by way of Kron’s loss formula 
as given in (5), which represents the losses as a 
function of the output level of the system 
generators. 
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Where ijB   is the transmission loss 

coefficient, GiP , GjP  the power generation of ith and 

jth  units. 
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3 Firefly algorithm 
Fireflies (lightning bugs) use their bioluminescence 
to attract mates or prey. They live in moist places 
under debris on the ground, others beneath bark and 
decaying vegetation. 
Firefly Algorithm (FFA) was developed by Xin-She 
Yang at Cambridge University in 2007. It uses the 
following three idealized rules: 
1) Each firefly attracts all the other fireflies with 
weaker flashes [26].All fireflies are unisex so that a 
firefly will be attracted to other fireflies regardless 
of their sex. 
2) Attractiveness is proportional to their brightness; 
thus for any two flashing fireflies the less bright will 
move towards the brighter one. The attractiveness is 
proportional to the brightness and they both 
decrease as their distance increases. If there is no 
brighter firefly than a particular one it will move 
randomly. 
3) The brightness of a firefly is affected or 
determined by the landscape of the objective 
function.  
For a maximization problem the brightness can 
simply be proportional to the value of the objective 
function. Other forms of brightness can be defined 
in a similar way to the fitness function in genetic 
algorithms based on these three rules. 
 
 

3.1 Attractiveness 
In the firefly algorithm there are two important 
issues: the variation of light intensity and the 
formulation of the attractiveness. For simplicity, we 
can always assume that the attractiveness of a firefly 
is determined by its brightness which in turn is 
associated with the encoded objective function [27]. 
In the simplest case for maximum optimization 
problems, the brightness I of a firefly at a particular 
location x can be chosen as I(x) corresponding to 
f(x). However, the attractiveness β is relative; it 
should be seen in the eyes of the beholder or judged 
by the other fireflies [24]. Thus, it will vary with the 
distance rij between firefly i and firefly j. In 
addition, light intensity decreases with the distance 
from its source and light is also absorbed in the 
media so we should allow the attractiveness to vary 
with the degree of absorption. In the simplest form, 
the light intensity I(r) varies according to the inverse 

square law   2/ rIrI s
 

Where sI is the intensity at the source. 

For a given medium with a fixed light absorption 
coefficient, the light intensity I varies with the 
distance r [28]. 

That is 
reII  0 , where I0 is the original light 

intensity. In order to avoid the singularity at 

r = 0 in the expression   2/rIrI s  the combined 

effect of both the inverse square law and absorption 
can be approximated using the following Gaussian 
form: 
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Sometimes we may need a function which decreases 
monotonically at a slower rate. In this case we can 
use the following approximation: 
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At a shorter distance, the above two forms are 
essentially the same. This is because the series 
expansions about r = 0 have the form: 
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And are equivalent to each other up to the order of 
0(r3). 
Since a firefly’s attractiveness is proportional to the 
light intensity seen by adjacent fireflies, we can now 
define the attractiveness β of a firefly by: 
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Where β0 is the attractiveness at r = 0. As it is often 
faster to calculate 1/ (1 + r2) than an exponential 
function, the above expression, if necessary, can 

conveniently be replaced by 2
0

1 er
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
  . Equation 

(9) defines a characteristic distance 


1
  over 

which the attractiveness changes significantly from 

0  to 
1

0
e . 

In the implementation, the actual form of 

attractiveness function  r can be any 

monotonically decreasing function such as the 
following generalized form: 
 

 
mrer   0  with  1m                                    (10) 
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For a fixed , the characteristic length becomes 

11   m
  as  m . 

Conversely, for a given length scale   in an 
optimization problem, the parameter   

can be used as a typical initial value. That is  

m


1
  . 

 
 

3.2 Distance and Movement 

The distance between any two fireflies i and j at ix  

and jx is the Cartesian distance given by [29] as 

follows: 
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Where ikx
 is the kth component of the spatial 

coordinate ix   of ith firefly as shown in fig.2 the 

movement of a firefly i is attracted to another more 
attractive firefly j is determined by 
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Where the first term is the current position of a 
firefly, the second term is used for considering a 
firefly’s attractiveness to light intensity seen by 
adjacent fireflies and the third term is used for the 
random movement of a firefly in case there are not 
any brighter ones. 
The coefficient α is a randomization parameter 
determined by the problem of interest, while rand is 
a random number generator uniformly distributed in 
the space [0, 1]. As we will see in this 
implementation of the algorithm, we will use β0 
=0.1, α Є [0, 1] and the attractiveness or absorption 
coefficient γ= 1.0 which guarantees a quick 
convergence of the algorithm to the optimal solution 
[30]. 
 
 

4 Particle swarm optimization method 
The particle swarm optimization works by adjusting 
trajectories through manipulation of each coordinate 
of a particle. Let ix  and iv  denote the positions and 

the corresponding flight speed (velocity) of the 
particle i  in a continuous search space, respectively. 

The particles are manipulated according to the 
following equations [31, 32 and 33]. 
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Where: 
t : pointer of iterations (generations). 
w : inertia weight factor. 

21, cc : acceleration constant. 

21, rr  : uniform random value in the range (0,1). 
)(t

iv  : velocity of particle i at iteration t. 
)(t

ix  : current position of particle i at iteration t. 
)(t

ipbestx  : previous best position of particle i at 

iteration t. 
)(t

gbestx  : best position among all individuals in the 

population at iteration t. 
)1( t

iv : new velocity of particle i. 
)1( t

ix : new position of particle i. 

 
Algorithm 
1. Initialize the population - positions and velocities 
2. Evaluate the fitness of the individual particle 
(pbest) 
3.Keep track of the individuals highest fitness 
(gbest) 
4. Modify velocities based on pbest and gbest 
position 
5. Update he particles position 
6. Terminate if the condition is met 
7. Go to Step 2 
 
 

5 Artificial Bee Colony algorithm 
Artificial Bee Colony (ABC) algorithm, proposed 
by Karaboga [34] for optimizing numerical 
problems in, simulates the intelligent foraging 
behavior of honey bee swarms.  An idea based on 
honey bee swarm for numerical optimization. In 
ABC algorithm, the colony of artificial bees 
contains three groups of bees: employed bees, 
unemployed bees ( onlookers and scouts) The scout 
bees randomly search the enviroment surriounding 
the hive for new food sources and this bevavior is a 
kind of fluctuations which is vital for self-
organization. 
The outlookers waiting in the hive find a food 
source by means of information presented by 
employed foragers. 
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The mean number of scouts is about 5 –10% of the 
foragers. In ABC, first half of the colony consists of 
employed artificial bees and the second half 
constitutes the artificial onlookers. The employed 
bee whose food source has been exhausted becomes 
a scout bee[34]. 
In ABC algorithm, the position of a food source 
represents a possible solution to the optimization 
problem and the nectar amount of a food source 
corresponds to the quality (fitness) of the associated 
solution. The number of the employed bees is equal 
to the number of food sources, each of which also 
represents a site, being exploited at the moment or 
to the number of solutions in the population[35]. 
The main steps of the algorithm are given below: 

• Initialize. 
• REPEAT. 
(a) Place the employed bees on the food 

sources in the memory; 
(b) Place the onlooker bees on the food 

sources in the memory; 
(c) Send the scouts to the search area for 

discovering new food sources. 
• UNTIL (requirements are met). 

In the ABC algorithm, each cycle of the search 
consists of three steps: sending the employed bees 
onto the food sources and then measuring their 
nectar amounts; selecting of the food sources by the 
onlookers after sharing the information of employed 
bees and determining the nectar amount of the 
foods; determining the scout bees and then sending 
them onto possible food sources. 

1) Initialize the population of solutions 
( )

iji xx =  

2) Evaluate the population 
          3) cycle=1 

4) repeat 
5) Produce new solutions (food source 

positions) vi in the neighbourhood of xi for the 
employed bees; for example using the following 
formula. 
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6) Apply the greedy selection process between 

vi and xi . 
7) Calculate the probability values pi for the 

solution xi by means of their fitness values fi . For 
example, using the following equation. 
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For the minimization problem, the fitness 

value might be calculated as follows. 
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Where : Fi is the cost value of the objective 

function. 
8) Produce new solutions (new positions) vi 

for the onlookers from the solutions xi, selected 
depending on pi and evaluate them. 

9) Apply the greedy selection process between  
vi  and xi. 

10) Determine the abandoned solution 
(source) xi, if exists, and replace it with a new 
randomly produced solution xi for the scout. The 
following definition might be used for this purpose. 

 
( ) ( )

jjjij xxrandxx minmaxmin ×1,0+=             (18) 

 
where xminj is the lower bound of the parameter 

j and xmaxj   is he upper bound of the parameter j. 
11) Memorize the best food source position 

(solution) achieved so far 
12)cycle=cycle+1 
13)until (cycle= Maximum Cycle Number 

(MCN)) 
 
 

6 Firefly algorithm-Artificial Bee 
Colony algorithm (FFA-ABC) 
We have noticed that the meta-heuristic methods are 
very efficient for the search of global solution for 
complex problems better than deterministic 
methods. 

However their disadvantage is the time of 
convergence which is due the high number of the 
agents and iterations. To solve this problem we have 
combined two meta-heuristic methods, the firefly 
and the artificial colony algorithm with a lower 
number of bees and fireflies as possible. 

This paper proposes a hybrid method which has 
two search stages. The first stage is a search by 
firefly algorithm (FFA) and second stage is a search 
with Artificial Bee Colony algorithm (ABC).  The 
Figures.2,3,4 and 5 show the explanation of 
computation procedure of hybrid method and its 
concept. 
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Fig.2  Concept of Hybrid Method 

 

Fig.3  Global optimization of all the generators of 
the IEEE 30 system 

 
 

 

Fig.4  Global optimization of all the 7generators of 
the IEEE 57 bus system  

 

Fig.5  The pseudo code of FFA-ABC 
 
 

7 Simulation results. 
The proposed method has been tested on two 

electrical networks IEEE 30-bus and IEEE 57 bus. 
 
 

7.1 The IEEE 30 bus. 
The system consists of 41 lines, 6 generators, 4 Tap-
changing transformers and shunt capacitor banks 
located at 9 buses 
The table 1 shows the technical and economic 
parameters of the ten generators of the IEEE 30-bus 
system (Show in Figure 6).Total load demand of the 
system is 283.4000 MW 
 
 

7.2 The IEEE 57 bus. 
The IEEE 57 bus system has 80 transmission 
circuits. The single-line diagram of this system is 
shown in Fig. 7 and the detailed data are given in 
[9]. The values of fuel cost coefficients are given in 
Table.2, Total load demand of the system is 1250.8 
(MW), and 7 generators should satisfy this load 
demand economically. 
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Fig.6  One line diagram of IEEE 30 bus system 
 

 
Fig.7  One line diagram of IEEE 57 bus system 

 
Table.4 presents the results of each method 
individually respectively the ABC and FFA methods 

as well as the results of the hybrid approach FFA-
ABC applied to a network with 30 nodes with a 
power demand 283.40MW  and constant losses of 
9.459 MW. 

 
Table.1  Generators parameters of the IEEE 30 Bus 

Bus min
Gip (MW) max

Gip (MW) 
Cost coefficients 

ia  ib  ic  

PG1 50 200 0.00375 2.00 0.00 
PG2 20 80 0.01750 1.75 0.00 
PG5 15 50 0.06250 1.00 0.00 
PG8 10 35 0.00834 3.25 0.00 
PG11 10 30 0.02500 3.00 0.00 
PG13 12 40 0.02500 3.00 0.00 

 
Table.2  Generators parameters of the IEEE 57 Bus 

Bus min
Gip (MW) max

Gip (MW) 

Cost coefficients 
 

ia  ib  ic  

PG1 0.00 575.88 0.01 0.30 0.20 
PG2 0.00 100 0.01 0.30 0.20 
PG3 0.00 140 0.01 0.30 0.20 
PG6 0.00 100 0.01 0.30 0.20 
PG8 0.00 550 0.01 0.30 0.20 
PG9 0.00 100 0.01 0.30 0.20 

PG12 0.00 410 0.01 0.30 0.20 

 
Table.3  FFA-ABC method parameters 

Parameter Setting 

Number of iterations FFA-ABC 200 
the population size for firefly(n) 10 
the light absorption coefficient(γ) 1.0 
a randomization parameter of FFA(α) 0.4 
The attractiveness coefficient of FFA(β0) 1.0 
Colony size (employed bees + onlooker 
bees) 

30 

Food sources = 15 
 

Table.4  Optimization results of  FFA-ABC approach for IEEE 30 bus 

Bus MDEOPF [37] PSO ABC FFA FFA-ABC 

PG1 175.974 178.061 178.061 178.710 190.382 
PG2 48.884 54.056 54.056 49.017 47.800 
PG5 21.510 19.836 19.836 22.151 19.399 
PG8 22.240 14.890 14.890 14.112 11.862 
PG11 12.251 12.427 12.427 13.587 15.262 

PG13 12.000 13.129 13.129 14.693 14.024 

PL 9.459 9.459 9.459 9.459 9.459 

t(s) 23.070 14.961 13.768 12.373 10.219 

Cost ($/hr) 802.376 801.105 801.105 801.588 799.270 
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Table.5. Comparison of different methods for IEEE 57 bus system 

Bus MATPOWEROPF [38] GAOPF [38] GAMATPOWEROPF [38] PSO FFA-ABC 

PG1 265.330 277.127 277.149 311.212 301.890 
PG2 100.000 100.000 100.000 97.232 97.468 
PG3 140.000 140.000 140.000 122.835 139.980 
PG6 100.000 100.000 100.000 98.598 92.183 
PG8 276.970 277.260 277.282 269.168 236.501 

PG9 100.000 100.000 100.000 99.965 99.115 

PG12 287.560 275.403 275.403 266.826 301.582 

PL 16.060 19.06 19.060 19.060 19.060 

Cost ($/hr) 3176.390 3175.579 3173.982 3156.684 3149.614 

 

Tables 4 and 5 illustrate the results of the 
application of the methods ABC, FFA, PSO and 
FFA-ABC as well as the results of other researchers 
[37]-[38] with two electrical networks. These results 
clearly show the effectiveness and performance of 
the FFA-ABC over other methods either in terms of 
function cost value or in terms of convergence time 
as shown in Figures.8,9,10 and 11. 
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Fig.8  The function cost values in different iterations 

for FFA-ABC method (IEEE 30 BUS) 
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Fig.9  The function cost values in different iterations 

for ABC method (IEEE 30 BUS) 
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Fig.10  The function cost values in different 

iterations for PSO method (IEEE 57bus ) 
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Fig.11  The function cost values in different 

iterations for FFA-ABC method (IEEE 57bus ) 
 
 

8 Conclusion 
This paper presents a methodology for solving EPD 
including active power dispatch using two Meta 
heuristic methods based on firefly and artificial Bee 
colony algorithm. The method developed was tested 
on the IEEE 30 bus and IEEE 57 bus.  The case 
studies have shown that method is robust and can 
provide an optimal solution with fast computation 
time and a small number of iterations. 
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